首页> 外文OA文献 >Enhancing E-Learning Systems with Personalized Recommendation Based on Collaborative Tagging Techniques
【2h】

Enhancing E-Learning Systems with Personalized Recommendation Based on Collaborative Tagging Techniques

机译:基于协同标记技术的个性化推荐增强电子学习系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Personalization of the e-learning systems according to the learner’s needs and knowledge level presents the key element in a learning process. E-learning systems with personalized recommendations should adapt the learning experience according to the goals of the individual learner. Aiming to facilitate personalization of a learning content, various kinds of techniques can be applied. Collaborative and social tagging techniques could be useful for enhancing recommendation of learning resources. In this paper, we analyze the suitability of different techniques for applying tag-based recommendations in e-learning environments. The most appropriate model ranking, based on tensor factorization technique, has been modified to gain the most efficient recommendation results. We propose reducing tag space with clustering technique based on learning style model, in order to improve execution time and decrease memory requirements, while preserving the quality of the recommendations. Such reduced model for providing tag-based recommendations has been used and evaluated in a programming tutoring system.
机译:根据学习者的需求和知识水平对电子学习系统进行个性化设置是学习过程中的关键要素。具有个性化建议的电子学习系统应根据单个学习者的目标调整学习体验。为了促进学习内容的个性化,可以应用各种技术。协作和社会标签技术可能有助于增强对学习资源的推荐。在本文中,我们分析了在电子学习环境中应用基于标签的推荐的不同技术的适用性。基于张量因子分解技术的最合适的模型排名已被修改以获得最有效的推荐结果。我们建议使用基于学习样式模型的聚类技术减少标签空间,以缩短执行时间并减少内存需求,同时保留建议的质量。这种用于提供基于标签的推荐的简化模型已经在编程辅导系统中使用和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号